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ON POSITIONAL CONTROL UNDER AFTEREFFECT 
IN THE CONTROLLING FORCES* 

1u.S. OSIPOV and V.G. PIMENOV 

Positional control problems are studied for systems with aftereffect inthecontrols. 
The existence of an equilibrium situation is proved in an encounter-evasion problem 
and a method is indicated for constructing the desired controls. The article abuts 
the investigations in /l-5/ and is a continuation of /6/. 

1. The controlled system 

5' (t) = fl tt, 5 (t), u (0, u. (t - 4) + f, (t, 5 017 v (a 
XEF, ue PC R’i, VEQCR~~, 

t E [to, 61, T =y con& > 0 

(1.1) 

is specified. Here 5 is the phase vector, zz and u are controls, P and Q are compacta (R” is 
an U -dimensional Euclidean space), the functions fl(t,s,u,w} and fi (6 .G 4 are defined, are 
continuous in all arguments, and satisfy a local Lipschitz condition in z on Ito, 81 x Rn x 

and [t,,@] X R” x Q, respectively, and in their domains 

II fl 0, z, u, w) + f2 (t, 5, 4 II c x (2 t I/ 5 II), x const 

Let U, be some set of functions on the interval I-r, U] and &I, C R'". Two problems are ex- 
amined. The first consists in the construction of a control u by the feedback principle 
u [t]=u(t;x[t],u[t fs], -r <s< 0), taking the vector z onto J$, at some instant t,.<fi for any 
admissible realization of control V, and in such a way that the condition u It*+- slf U, is 
fulfilled (this is an encounter problem /6/j. The second problem is to construct a control 
v by the feedback principle v[t] :: v(t;x[t];u It +s], --T< s <a), guaranteeing that the phase 
vector of system (1.1) evades contact with J$,for any admissible realization of control u (an 
evasion problem). Certain variants of these problems were studied in /6/ from the viewpoint 
of differential game theory developed in /l-33/. In the present paper, in constrast to 161, 
we examine the general situation, obtain the necessary and sufficient conditions for the solv- 
ability of the problems posed, and indicate a method for constructing the optimal controls. 

Let us pose the problems more precisely. Let P(s) be a collection of all measurable 
functions U(.) on set 0 with values in P,Q(o) be a collection of all measurable functions 
u(a) on set u with values in Q. Every triple p = {t; S; U(S), -T < s< 0}, where t Et&,, @I, ZE 

Rn, u (.).E P (i-z, O)),. is called a position. A rule that associates a function u (t) from 
P (It,, t*)) (0 (t) from Q (It*, t*)) with a position p* = {t*, z.+, U* (s)} and a number t* E (t*, @],is 
called a strategy U(V) . Let there be specified a position po ={to, zo, uo(s)} and a partit- 
ioning A of interval [to,+] by the points 'co =t,<z,<.. . < TN(A) = 6, 6 (A) = ILlaXi (Ti+l - ‘ci). 

We define an approximate motion of system (1.11, corresponding to strategy u, as the pair 
{z [.la, u(.JA}, where the absolutely continuous function x 1.1, = i ItI* = 5 [t, pa, VIA, to < t ,< 6, 

and the control uI*]aE P([t, --T, @I) satisfy the conditions 

r 11016. = 20, u It, + sla := ug (s), -T < s < 0 (1.2) 

in addition, the equality 

f It]& = #r (t, x ItI*, rcl&, L1 It -Zlb) + & (t, 1 I&, u it]) (1.3) 

is fulfilled for almost all 1 E [to, @] and for t e [zi, zicl) u [tlb is a function from P([Zi, Zi+l)), 
designated as the strategy U with respect to position fri, z [~!]a, hi [~]a} and to number zihl. 
Here and subsequently, Ut (s) = u (t + s), -z < s < 0. In (1.3) u ItI YES Q([t,,e]) is some realiza- 
tion of control V. We define an approximate motion of system (l.l), corresponding to strat- 
egy V, as the pair {s[.]&, u[.]>, where the absolutely continuous function x[.],, =r[t]& =z[t, 
pot VIA, to< t<fJ, satisfies condition (1.2) and for almost all t E [to, 61 satisfies the 
equations 
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where for t E [ri, '~i+r), v Itla is a function from Q ([z;, ritl)), designated as the strategy V with 
respect to position {zi, 

z, 61) 
z [.CiIAr k,. [s]} and to number 

is some realization of control 
zitl * 

The function u [.I- u [tl E P ([t, - 
u, satisfying the condition u [t, + s] ~~ u,,(s),--7<ss(O. 

Let I.41 be the closure of A c Rn and A” be an open E-neighborhood of A. Let some 
set M be prescribed in the position space. By M, we denote the section of M by t (i.e., 
the set of pairs 
and u (s). 

(5, U(S)} such that {t,s,u(s)}~M; by M,,,(,, we denote the sections by t 
By [Ml and ME we denote collections of positions 

and 5 E M; U(8) r respectively. 
{t, 5, u (s)} such that x E [M,, t,(s)] 

Problem 1 (encounter). System (l.l), position PO and setM are prescribed. Con- 
struct a strategy u' with the property: for any s).O we can find a,,> 0 such that the 
condition 

XITjlAE ME 
134$SlA 

is fulfilled at some instant q E [tot fl] for every motion 
with 6 (A) -( 6, . 

{z[t]A, u0 [.]a} = {z [t,p,, U]O&, u0 1.L) 

Problem 2 (evasion). System (l.l), position PO and set M are prescribed. Construct 

a strategy V” with the property: numbers s>O and &,>O exists such that the condition 

J ItllA @ I%,, u,,[s, 

is fulfilled for every motion {x [.lA, u [.I} = {z It, p,,, V']&, u [.I} with &(A) < 6,, for any in- 

stant q E [t,, Sl. 

2. Let us indicate the conditions for the solvability of the problems posed. Let some 

set W be specified in the position space. We say that set W is (y,u)-stable relative to 

M if for any p* = {t*, Z*, u* (4) E w, t* E @*, 81, u (.) E Q (k*, t*)) and y > 0 we can find 

a function u (.)E P (It,, t*)) such that 

J (t*, p*. 11, (.), U (. )) E MT::, +(*) 

or if an instant q E [t*, t*l exists such that 

(2.1) 

(2.2) 

IIq (s) = 
i 

1’ (II s). s E It, - q. 0) 

%I’1 S - t*), S E i- T. I, - 11) 

Here r(t, p*, u(.), u(.)) is a solution of (1.1) from position P* with the functions u (.) and 

u (.) selected (i.e., 5 (&* I'*, u (.), u (.)) = 5* and u (t* -I- S) = u* (S), --7 .< 5 < 0). We say that 

set Wis (:'. u)-stable if for any ['Xi. E W, t* E (t,, 61, u (.)E P (It,, t*)) and number y> 0 we 

can find a function v(.)E Q([t,, t*)) such that condition (2.1) is fulfilled. 

Let W be a set (y, u)-stable relative to M, whose sections K't,z((b) are closed in R'", 

i.e., W = [WI. A strategy U' associating with positicn and number 

I* E (t*, 61 a function u" (1) _ P (It,, 1*)) 

p.+ = (t*, x*, u*(s)} 

lo. 
by the rule: 

Let W,?, ,,,,.) y. Then u0 is any from p 1*)); 

2O. Let WI‘, IIs~.j # Q+ and Y be a vector from WI.,,~,(\,, closest to z* in the metric of fl", 

is called a strategy extremal to this set w. We choose the vector u* E Q from the con- 

dition 

(Y -z*) fz (L*. 5*1 u*) y- FL; {(Y -5*) fz U*, r*> 4) (2.3) 

Then we find a function u" (t) F P ([t*, t*)) from the condition of (y, u)-stability of setW with 

respect to the quantities p** ~7 {t*, Y, u* (s)} E w, f*, function u* (t)-z v*, t, < t< t* and numb- 

er y ‘< (t* - t*) *. 
Let W -[WI. A strategy 1/ associating with pOSitiOn P* = {t*, Z*,u* (s)} and number 

2* E (t ,61 
lo. 

a function u0 (t) E Q ([t*, t*)) by the rule: 

Let nil_, ,,*(', m= Q. Then v0 (t) is any function from Q ([t*, t*)); 

2O. Let VVf,. u,(:.j #@ and vector Y <F wt,.t8,(.j be closest to I.+ inRi is called a strategy 

extremal to W. Let vector U" kc Q satisfy the condition 

(Y - 5*) f? (L*, I*, 4 mas {(y -s*)f, 0*, z*, 4) 
JE(Z 
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Then V” (t) G V”, t E [t*, t*). 
On the space of positions p* ={t,,s,, u* (s)} we introduce the function 

’ id (II r* - ,v III2 
r (P*, W = 

i 

Ct’,+, llsc9j f r 
Y f3 fi’,_ U.(q) (2.4) 
j- =, II‘ i,. U,(h) = ;_7 

Lemma 2.1. Let set W be (v, u)-stable relative to M and W -IWl. Then, if POE W, 
the strategy U" is extremal to Wand ensures the condition: for any E> 0 wecanfind 6,‘>0 

such that for every motion {s I.]*, u" [.I&) (5 It, p,,, UOJil, u" [.I*} with 6 (A)< 6, the con- 

dition 

r hi1 = r (pi, W = r ({Tip x IT&, Gi I&}, W) < e (2.5) 

is fulfilled for all T,<T+,, where either %,, is the instant ri at which the function u"[t]~ 
P (['pi, Ti+,)) is first designated as the strategy u" from the condition (2.2) or ril : 6 if 

such an instant does not exist. 
Let us sketch the lemma's proof. Let X(to,zO) be the set of solutions of system (l.l), 

corresponding to all possible functions u (.) E P (Ito - T. @I), I) (.) E Q ([to, 61) with initial conditions 
I (to) = 10. Let number h, - h, (to, .rO) be such that 11 z (t) 11 c A,. t E [to, el, T(.)E X (to, zo), and h, > 0 be 
some number. We denote 

X (to. .1'0, A0) = u X V*, I*) 

t. E Ito, 81. II I. II < J”, (hJ, Jo) i- J.0 

Then all the functions z (.) E X (lo, .rO, iO) are uniformly bounded by some constant h zm ~(t,,s,,h,). 
Let us show that if the condition 

I ITi]< ho = E (2.6) 

is fulfilled for the motion {2[.1:, u” l.lAl and the instant T~<TQ then the estimate 

lZ2 tTi+ll < + lril (1 + c (Ti+l - Ti)) + (Ti+l - Tj) ‘p (Tj+l - Ti) C = COllSt (2.7) 

is valid. Here ~((6) is a continuous function, cp(6)-r 0 as 6-0, and the estimate (2.7) is 
uniform with respect to all motions {zI.],,S[.],)= {zlt,p,,, ~]a,t~“[.]a) and instants Ti with prop- 
erty (2.6), i.e., C and q(6) depend only on t,,q and A,. Indeed, by the chaise of func- 

0 
tmn II [.I E P ([Til r,+l)) 

” ITi+ d (II z lTi+J* - z @i+l) II + YJa 

where ~(1) is a solution of system (1.1) from the initial position P*i= (TirY.u4'[S]~lE I+J with 
u(t) eu*, t E [Ti9 Ti+l) (c* satisfies (2.3)) , YE u'ri,~ri"Il~ ?'.s closest to z [TilA) and II It] G u0 It],. 

Since y< (z~+~ - rip, by virtue of (2.6) we obtain 

r2[ri+11 < /I ' ['i+l]a - z (ti+l) /I ' + 2h (Zi+l - Ti)l + ('j+l - Zi)' 

Hence, because of the assumptions on the right-hand side of (l.l), we obtain 

(t),u*)dt iF$- (2h + (q+, -T~)~)(+~+~ - T~)~< 

r2[Ti]-;-2 s (y-z(Til~)(!"(l,z[Til~'U*)- 
9 

/r(t,= [T~]~.v lf])) dt T @[.cJ + (Ti+l -- TJ 'P&+-l - 'i) 

By the choice of vector U' we obtain estimate (2.7). 
Now assume that the lemma is false. This signifies that we can find t>u such that for 

anY &>O, in particular, for b0 such that the estimate 

(1 + tf - to) exp Ic (6 - Ml ‘p (6) Q e* (2.8) 
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is fulfilled for 6<6,, we can find a motion {z I,lA, u* I.1,; = (zlt. pO, W,, ~1~ [.ld} with 6 (A) d 6, 
and an instant Ti K T<, such that (2.5) is not fulfilled. Let 7,. be the smallest partition- 
ing instant xi at which condition (2.5) is not fulfilled. Then (2.6) is fulfilled for in- 
stants 7, such that 7~ Q ii < ?%., < zi,, which implies estimate (2.71, If the uniform estimate (2.71 
is fulfilled for all 7" 5. 7i __ 2, ?a( then the estimate 

Fz IX*1 < (r* ITo1 f (1 + Ti - la) P (6) CXP IC (4 - to)] 

is fulfilled for all instants Ti such that TO - 7, < T,:, which can be verified by contradiction. 
Hence by virtue of condition r[~~] &=O and of (2.8) follows PIT,,]. F, which contradicts the de- 
finition of Tcii. 

Theorem 2.1. Let set w be (v, u)-stable relative to M, W .- IW] and Wsi= [&',I. Then, 
if pod W, then the strategy U" extremal to W solves the problem of encounter with ,?I, 

Theorem 2.2. Let set w be (y, v)- stable, W y IWI , and let a> 0 exist such that 
W n w ?- $. Then, if p,,~ W, then the strategy P" extremal to W solves the problem of 
evading M. 

Theorem 2.3. For any position PO and set H, either the problem of evading M is 
solvable or the problem of encounter with ~c is solvable for any e> 0. 

The proofs of Theorems 2.1- 2.3 rely on Lemma 2.1 and are analogous to the corresponding 
arguments in /1,3/. 

Note. The following result is valid for systems without time lag in the control: if the 
problem of encounter with the target set is solvable for an initial position then in the posi- 
tion space there exists a stable set containing the initial position and terminating on the 
target set; therefore, the strategy resolving the encounter problem can be constructed as one 
extremal to the stable set /1,3/. In systems with aftereffect in the control this statement 
is, in general, false,as the following example shows. Consider the two-dimensional(z (7, 3 ,r,,) 
sys tern 

Let the target set j%I consist of positions p= {~,~,I~,u(s)), where t = 13 l,x, = 1.3, = 0, a(s) is 
any function from P([--r, oj). By W we denote the set of positions from which the problem of 
encounter with M is solvable. The set W-I#@ because the encounter problem is solvable 
from the position p. == {to. ziO, Q*, I+ (s)} , where fo = -4, 

se; w cannot be stable? 

--1, $0 =-- --I. “ho SE 1, d c I-?, (I). ~a+. 

ever, Wo= ld and, therefore, 

3. Let us show that the fundamental assertion in differential game theory, namely, the 
theorem on the alternative /l/, is valid for the differential encounter-evasion game made up 
of Problems 1 and 2. 

In the position space let there be given a sequence of sets {W(j), j 1, 2, . . .) with 
the properties: 

*) J.$%+l) c @W, 2) W(j) = [f+W], 3) set &W is (y, u)-stable relative to W.i, 4) W*(j) c: 
ej 

;:; ’ 
ej ~-1 ij. Let t,, I@ and number h,>O also be given. On the set of positions p* --: 

zs, ae (s)] we introduce the function x (P*) -X(P,, W% t,, 50, h,): 

x (p,) = infj (1 / j / 1 / j >, r2 (p,, W(j)) (1 + 6 - t*) exp ‘X IC (8 - &)I} 

where function r(p,, w) is defined by (2.4) and C _ C(t,,s,;h,) is the constant in estimate 

(2.7). If the set 

{I / j ( 1 / j > r2 (p*, W(j)) (1 + d - t*) exp [C (fl - &)I} 

is empty, we assume x(p,) = + co. We say that a strategy li"" is extremal to the sequence of 
sets {W(j)} with properties l)--3) if /4,5/: u"" associates with position P* and number &'* E 
(t*, 61 a function u"" (t) E P ([1,, t*)) by the rule: 

Lo . Let x(p,) == + 00. Then u""(t) is any function from P ([t,, t*)). 

2O. Let x(P*j<+m. We find the number j0 -=jn (p,) from the conditions: if X(&) -0, 

then 1 ijo<t* -&; if 0 < x (p,) < _I 00, then 1 ijo = x Cp,). As u*“(~) we take the function 

a0 (2)~ p (ft,, t*)) designated as the strategy U" extremal to the (p,u)-stable set W'~j~~~. 
The following statements are valid. 
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Lemma 3.1. Let a sequence of sets {w(j)} with properties l)-33), a position Pa = {to, XO, 

uO@)} E njw(j) and h,< 1/g be specified. Then for any fi, 0< p < h,, we can find 6, > 0 
such that for every motion (5 [.]a, U""[~l,} = {X [t, po, UoolA. zP[tl,} with 6 (A)< 6, the condition 

x [ril =X @i) =X ({ri, 5 [.Cil>\r ~r~““[~l~)) < B is satisfied for all 'ti < Ti,, where either ril is the 

instant ri when the function LLoo [tl E P ([Ti, 7i+l) I chosen as the function u"[t], is first fixed 

from condition (2.2) or 4, =fi if such an instant does not exist. 

Lemma 3.2. In the hypotheses of Lemma 3.1 let the sequence of sets {W(j)) possess the 

property 4) as well. Then strategy U"" solves the problem of encounter with M for the pos- 

ition PO. 
From Theorem 2.3 and Lemma 3.2 follows 

Theorem 3.1 (the alternative). For any position p0 and any set M, either the 

problem of encounter with M or the problem of evading M is solvable. 

Indeed, suppose that the problem of evading M is unsolvable from position pO. Then 

by Theorem 2.3 the problem of encounter with Mt'," is solvable for any El3 > 0 . This signif- 

ies that we can find a strategy U such that for the number ~1.3 we can find a number A, = 

6, (E/3, u) > 0 such that for every motion {.z ItI_\, u [tla) (5 It, po, Z&. u IL]*) with 6 (A)< 
6, there exists n E It,, 61 such that 

Along such motions we compose the set W(E, U) of positions {t, 2, u (s)}, t E [t,, 111, 5 x [t1,, 
u (s) =- Ut [sl.,. The set W (E, U) is (v, u)-stable relative to hP3 and W(E, U), C hl$“. But 

then the set w (E) -- u w (F, U), where the union is taken over all strategies U solving the 

problem of encounter with ,JJ~Y for PO, is (v, u)-stable relative to !11*",3 and W(F)* C I@ “. 
We take the sequence tCj lljY j 1, 2, . .; then the corresponding sequence of sets 

[W (E~)I, j 1, 2, . ..} possesses properties l)-4) and po~fl, W(j). Consequently by 'I?za 

3.2, the problem of encounter with JJ is solvable. We note that, in general, th:! set n, W(j) 
is not (y, a)-stable (see the example). 
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