ON POSITIONAL CONTROL UNDER AFTEREFFECT in the controlling forces*

Iu.S. OSIPOV and V.G. PIMENOV

Positional control problems are studied for systems with aftereffect in the controls. The existence of an equilibrium situation is proved in an encounter-evasion problem and a method is indicated for constructing the desired controls. The article abuts the investigations in $/ 1-5 /$ and is a continuation of $/ 6 /$.

1. The controlled system

$$
\begin{align*}
& \dot{x}(t)=f_{1}(t, x(t), u(t), u(t-\tau))+f_{2}(t, x(t), v(t)) \tag{1.1}\\
& x \in R^{n}, u \in P \subset R^{r_{1}}, v \in Q \subset R^{r}, \\
& t \in\left[t_{0}, \vartheta\right], \tau=\mathrm{const}>0
\end{align*}
$$

is specified. Here x is the phase vector, u and v are controls, P and Q are compacta (R^{n} is an u-dimensional Euclidcan space), the functions $f_{1}(t, x, u, w)$ and $f_{2}(t, x, v)$ are defined, are continuous in all arguments, and satisfy a local Lipschitz condition in x on $\left[t_{0}, \vartheta\right] \times R^{n} \times$ and $\left[t_{0}, \vartheta\right] \times R^{n} \times Q$, respectively, and in their domains

$$
\left\|f_{1}(t, x, u, w)+f_{2}(t, x, v)\right\| \leqslant x(1+\|x\|), x \quad \text { const }
$$

Let. U_{*} be some set of functions on the interval $[-\tau, 0]$ and $M_{*} \subset R^{n}$. Two problems are examined. The first consists in the construction of a control u by the feedback principle $u[t]=u(t ; x[t], u \mid t+s],-\tau \leqslant s<0)$, taking the vector x onto M_{*} at some instant $t_{*} \leqslant v$ for any admissible realization of control v, and in such a way that the condition $\left.u \backslash t_{*}+s\right] \in U_{*}$ is fulfilled (this is an encounter problem /6/). The second problem is to construct a control v by the feedback principle $v[t]=v(t ; x[t] ; u[t+s],-\tau \leqslant s<0)$, guaranteeing that the phase vector of system (1.1) evades contact with M_{*} for any admissible realization of control u (an evasion problem). Certain variants of these problems were studied in / $6 /$ from the viewpoint of differential game theory developed in $/ 1-3 /$. In the present paper, in constrast to $/ 6 /$, we examine the general situation, obtain the necessary and sufficient conditions for the solvability of the problems posed, and indicate a method for constructing the optimal controls.

Let us pose the problems more precisely. Let $P(\sigma)$ be a collection of all measurable functions $u(\cdot)$ on set σ with values in $P, Q(\sigma)$ be a collection of all measurable functions $v(\cdot)$ on set σ with values in Q. Every triple $p=\{t ; x ; u(s),-\tau \leqslant s<0\}$, where $t \in\left[t_{0}, \vartheta\right], x \in$ $R^{n}, u(\cdot) \in P([-\tau, 0))$, is called a position. A rule that associates a function $u(t)$ from $P\left(\left[t_{*}, t^{*}\right)\right)\left(v(t)\right.$ from $Q\left(\left[t_{*}, t^{*}\right)\right)$ with a position $p_{*}-\left\{t_{*}, x_{*}, u_{*}(s)\right\}$ and a number $t^{*} \in\left\langle t_{*}, \theta\right]$, is called a strategy $U(V)$. Let there be specified a position $p_{0}=\left\{t_{0}, x_{0}, u_{0}(s)\right\}$ and a partitioning Δ of interval $\left[t_{0}, \vartheta\right]$ by the points $\tau_{0}=t_{0}<\tau_{1}<\ldots<\tau_{N(\Delta)}=\boldsymbol{v}, \delta(\Delta)=\max _{i}\left(\tau_{i+1}-\tau_{i}\right)$. We define an approximate motion of system (1.1), corresponding to strategy U, as the pair $\left\{x[\cdot]_{\Delta}, u[\cdot]_{\Delta}\right\}$, where the absolutely continuous function $x[\cdot]_{\Delta}=x[t]_{\Delta}=x\left[t, p_{0}, U\right]_{\Delta}, t_{0} \leqslant t \leqslant \theta$, and the control $u[\cdot]_{\Delta} \in P\left(\left[t_{0}-x, \vartheta\right]\right)$ satisfy the conditions

$$
\begin{equation*}
x\left[t_{0}\right]_{\Delta}=x_{0}, u\left[t_{0}+s\right]_{\Delta}=u_{0}(s),-\tau \leqslant s<0 \tag{1.2}
\end{equation*}
$$

in addition, the equality

$$
\begin{equation*}
x^{-}[t]_{\Delta}=f_{1}\left(t, x[t]_{\Delta}, u[t]_{\Delta}, u[t-\tau]_{\Delta}\right)+f_{2}\left(t, x[t]_{\Delta}, v[t]\right) \tag{1.3}
\end{equation*}
$$

is fulfilled for almost all $t \in\left[t_{0}, \vartheta\right]$ and for $t \in\left[\tau_{i}, \tau_{i+1}\right) u[t]_{\Delta}$ is a function from $p\left(\left[\tau_{i}, \tau_{i+1}\right)\right.$, designated as the strategy U with respect to position $\left\{\tau_{i}, x\left[\tau_{i} \|_{\Delta}, u_{\tau_{i}}\{s]_{\Delta}\right\}\right.$ and to number τ_{i+1}. Here and subsequently, $u_{t}(s)=u(t+s),-\tau \leqslant s<0$. In (l.3) $v[t] \in Q\left(\left[t_{0}, \theta\right]\right)$ is some realization of control v. We define an approximate motion of system (1.1), corresponding to strategy V, as the pair $\left\{x[\cdot]_{\Delta}, u[\cdot]\right\}$, where the absolutely continuous function $x[\cdot]_{\Delta}=x[t]_{\Delta}=x[t$, $\left.p_{0}, V\right]_{\Delta}, t_{0} \leqslant t \leqslant \theta$, satisfies condition (1.2) and for almost all $t \in\left[t_{0}, \theta\right]$ satisfies the equations

[^0]$$
x^{*}[t]_{\Delta}=f_{1}\left(t, x[t]_{\Delta}, u[t], u[t-\tau]\right)+f_{2}\left(t, x[t]_{\Delta}, v[t]_{\Delta}\right)
$$
where for $t \in\left[\tau_{i}, \tau_{i+1}\right), v[t]_{\Delta}$ is a function from $Q\left(\left[\tau_{i}, \tau_{i+1}\right)\right)$, designated as the strategy V with respect to position $\left\{\boldsymbol{\tau}_{i}, x\left[\boldsymbol{\tau}_{\boldsymbol{i}}\right]_{\Delta}, u_{\tau_{i}}[s]\right\}$ and to number $\boldsymbol{\tau}_{i+1}$. The function $u[\cdot]=u[t] \in P\left(\left[t_{0}-\right.\right.$ $\tau, \mathfrak{U}]$) is some realization of control u, satisfying the condition $u\left[t_{0}+s\right]-u_{0}(s),-\tau \leqslant s<0$.

Let $[A]$ be the closure of $A \subset R^{n}$ and A^{ε} bc an open ε-neighborhood of A. Let some set M be prescribed in the position space. By M_{t} we denote the section of M by t (i.e., the set of pairs $\{x, u(s)\}$ such that $\{t, x, u(s)\} \in M$; by $M_{t, u(s)}$ we denote the sections by t and $u(s)$. By $[M]$ and M^{ε} we denote collcctions of positions $\{t, x, u(s)\}$ such that $x \in\left[M_{t, u(s)}\right]$ and $x \in M_{t, u(s)}^{e}$, respectively.

Problem 1 (encounter). System (1.1), position p_{0} and set M are prescribed. Construct a strategy U with the property: for any $\varepsilon>0$ we can find $\delta_{0}>0$ such that the condition

$$
x[\eta]_{\Delta} \in M_{\eta, u_{\eta}^{e}[s]_{\Delta}}^{\varepsilon}
$$

is fulfilled at some instant $\eta \in\left[t_{0}, \vartheta\right]$ for every motion $\left\{x[t]_{\Delta}, u^{\circ}[\cdot]_{\Delta}\right\}=\left\{x\left[t, p_{0}, U\right]_{\Delta}, u^{\circ}[\cdot]_{\Delta}\right\}$ with $\delta(\Delta) \leqslant \delta_{0}$.

Problem 2 (evasion). System (1.1), position p_{0} and set M are prescribed. Construct a strategy V° with the property: numbers $\mathbf{e}>0$ and $\delta_{0}>0$ exists such that the condition

$$
x[\eta]_{\Delta} \notin M_{\eta, u_{\eta}[s]}^{\ell}
$$

is fulfilled for every motion $\left\{x[\cdot]_{\Delta}, u[\cdot]\right\}=\left\{x\left[t, p_{0}, V^{\circ} \|_{\Delta}, u[\cdot]\right\}\right.$ with $\delta,(\Delta) \leqslant \delta_{0}$, for any instant $\eta \in\left[t_{0}, \vartheta\right]$.
2. Let us indicate the conditions for the solvability of the problems posed. Let some set W be specified in the position space. We say that set W is (γ, u)-stable relative to M if for any $p_{*}=\left\{t_{*}, x_{*}, \quad u_{*}(s)\right\} \in W, t^{*} \in\left(t_{*}, \vartheta l, v(\cdot) \in Q\left(\left[t_{*}, t^{*}\right)\right)\right.$ and $\gamma>0$ we can find a function $\left.u(\cdot) \in P\left(\mid t_{*}, t^{*}\right)\right)$ such that

$$
\begin{equation*}
x\left(t^{*}, p_{*} \cdot u(\cdot), v(\cdot)\right) \in W_{\left.t^{*}, u_{t+(~}^{\prime}\right)}^{\prime} \tag{2.1}
\end{equation*}
$$

or if an instant $\eta \in\left[t_{*}, t^{*}\right]$ exists such that

$$
\begin{align*}
& u\left(\eta, p_{*}, u(\cdot), v(\cdot)\right) \in M_{\mathfrak{\eta}, u_{\eta}(s)}^{\gamma} \tag{2.2}\\
& u_{\eta}(s)= \begin{cases}u(\eta \quad s), & s \in\left(t_{*}-\eta, 0\right) \\
u_{*}\left(\eta, s-t_{*}\right), & s \in\left(-\tau, t_{*}-\eta\right)\end{cases}
\end{align*}
$$

Here $x\left(t, p_{*}, u(\cdot), v(\cdot)\right)$ is a solution of (1.1) from position p_{*} with the functions $u(\cdot)$ and $v(\cdot)$ selected (i.e., $x\left(t_{*}, p_{*}, u(\cdot), v(\cdot)\right)=x_{*}$ and $\left.u\left(t_{*}+s\right)=u_{*}(s),-\tau \leqslant s<0\right)$. We say that set W is (ϑ, ν)-stable if for any $\mu_{*} \in W, t^{*} \in\left(t_{*}, \vartheta\right], u(\cdot) \in P\left(\left[t_{*}, t^{*}\right)\right)$ and number $\gamma ン 0$ we can find a function $v(\cdot) \in Q\left(\left[t_{*}, t^{*}\right)\right)$ such that condition (2.1) is fulfilled.

Let W be a set (γ, u)-stable relative to M, whose sections $W_{t, u(s)}$ are closed in R^{n}, i.e.. $W=[W]$. A strategy U^{\prime} associating with position $p_{*}=\left\{t_{*}, x_{*}, u_{*}(s)\right\}$ and number $i^{*} \in\left(t_{*}, \vartheta\right]$ a function $u^{\circ}(t) \in P\left(\left[t_{*}, t^{*}\right)\right)$ by the rule:
1°. Let $W_{t_{*}, u_{*}(v)} \cdots$. Then $u^{\circ}(t)$ is any function from $\left.P\left(\mid t_{*}, t^{*}\right)\right)$;
2°. Let $W_{t_{*}, u_{*}(\cdot)} \neq \varnothing$ and y be a vector from $W_{i_{*}, u_{*(j)}}$, closest to x_{*} in the metric of R^{n}, is called a strategy extremal to this set W. We choose the vector $v^{*} \models Q$ from the condition

$$
\begin{equation*}
\left(y-x_{*}\right) f_{2}\left(t_{*}, x_{*}, v^{*}\right)==\min _{v \in \emptyset}\left\{\left(y-x_{*}\right) f_{2}\left(t_{*}, x_{*}, v\right)\right\} \tag{2.3}
\end{equation*}
$$

Then we find a function $u^{\circ}(t) \models P\left(\left[t_{*}, t^{*}\right)\right)$ from the condition of (γ, u)-stability of set W with respect to the quantities $p_{* *}=\left\{t_{*}, y, u_{*}(s)\right\} \in \dot{W}, t^{*}$, function $v^{*}(t)=v^{*}, t_{*} \leqslant t<t^{*}$ and number γ 反 $\left(l^{*}-t_{*}\right)^{2}$.

Let $W=|W|$. A strategy V associating with position $p_{*}=\left\{t_{*}, x_{*}, u_{*}(s)\right\}$ and number $t^{*} \in(t, \vartheta]$ a function $v^{\circ}(t) \in Q\left(\left[t_{*}, t^{*}\right)\right)$ by the rule:
1^{0}. Let $W_{t_{*}, w_{*}(s)}=\varnothing$. Then $v^{\circ}(t)$ is any function from $Q\left(\left[t_{*}, t^{*}\right)\right)$;
2°. Let $W_{i_{*}, u_{*}(s)} \neq \varnothing$ and vector $y \in W_{i_{*}, u_{*}(\cdot)}$ be closest to x_{*} in R, is called a strategy extremal to W. Let vector $v^{\circ} \Leftarrow Q$ satisfy the condition

$$
\left(y-x_{*}\right) f_{2}\left(i_{*}, x_{*}, v^{\circ}\right) \cdots \max _{v \in Q}\left\{\left(y-x_{*}\right) f_{2}\left(t_{*}, x_{*}, v\right)\right\}
$$

Then $v^{\circ}(t) \equiv v^{n}, t \in\left[t_{*}, t^{*}\right)$.
On the space of positions $p_{*}=\left\{t_{*}, x_{*}, u_{*}(s)\right\}$ we introduce the function

$$
r\left(p_{*}, W\right)= \begin{cases}\inf \left\{\left\|x_{*}-y\right\|\right\}, & W_{t_{*}, u_{*}(s)} \neq \varnothing \tag{2.4}\\ y \in W_{l_{*}, u_{*}(s)} & W_{i_{*}, u_{*(*)}}=\varnothing \\ +\infty, & \end{cases}
$$

Lemma 2.1. Let set W be (γ, u)-stable relative to M and $W=[W]$. Then, if $p_{0} \in W$, the strategy U° is cxtremal to W and ensures the condition: for any $\varepsilon>0$ we can find $\delta_{0}>0$ such that for every motion $\left\{x[\cdot]_{\Delta}, u^{\circ}[\cdot]_{\Delta}\right\}=\left\{x\left[t, p_{0}, U^{\circ}\right]_{\Delta}, u^{\circ}[\cdot]_{\Delta}\right\}$ with $\delta(\Delta) \leqslant \delta_{0}$ the condition

$$
\begin{equation*}
r\left[\tau_{i}\right]=r\left(p_{i}, W\right)=r\left(\left\{\tau_{i}, x\left[\tau_{i}\right]_{\Delta}, u_{\tau_{i}}^{\circ}[s]_{\Delta}\right\}, W\right) \leqslant \varepsilon \tag{2.5}
\end{equation*}
$$

is fulfilled for all $\tau_{i} \leqslant \tau_{i}$, where either $\tau_{i_{1}}$ is the instant τ_{i} at which the function $u^{0}[t] \in$ $P\left(\left[\tau_{i}, \tau_{i+1}\right)\right)$ is first designated as the strategy U° from the condition (2.2) or $\tau_{i_{1}}=\theta$ if such an instant does not exist.

Let us sketch the lemma's proof. Let $X\left(t_{0}, x_{0}\right)$ be the set of solutions of system (l. 1), corresponding to all possible functions $u(\cdot) \in P\left(\left[t_{0}-\tau, \theta\right]\right), v(\cdot) \in Q\left(\left[t_{0}, \theta\right]\right)$ with initial conditions $x\left(t_{0}\right)=x_{0}$. Let number $\lambda_{1}-\lambda_{1}\left(t_{0}, x_{0}\right)$ be such that $\|x(t)\| \leqslant \lambda_{1}, t \in\left[t_{0}, \theta\right], x(\cdot) \in X\left(t_{0}, x_{0}\right)$, and $\lambda_{0}>0$ be some number. We denote

$$
\begin{aligned}
X\left(t_{0}, x_{0}, \lambda_{0}\right)= & \cup X\left(t_{*}, x_{*}\right) \\
& t_{*} \in\left[t_{0}, \vartheta\right],\left\|x_{*}\right\| \leqslant \lambda_{1}\left(t_{0}, x_{0}\right)+\lambda_{0}
\end{aligned}
$$

Then all the functions $x(\cdot) \in X\left(t_{0}, x_{0}, \lambda_{0}\right)$ are uniformly bounded by some constant $\lambda=-\lambda\left(t_{0}, x_{0}, \lambda_{0}\right)$. Let us show that if the condition

$$
\begin{equation*}
r\left[\tau_{i}\right] \leqslant \lambda_{0}=\varepsilon \tag{2.6}
\end{equation*}
$$

is fulfilled for the motion $\left\{x[\cdot]_{L}, u^{\circ}[\cdot]_{\Delta}\right\}$ and the instant $\tau_{i}<\tau_{i_{1}}$, then the estimate

$$
\begin{equation*}
\tau^{2}\left[\tau_{i+1}\right] \leqslant r^{2}\left[\tau_{i}\right]\left(1+C\left(\tau_{i+1}-\tau_{i}\right)\right)+\left(\tau_{i+1}-\tau_{i}\right) \varphi\left(\tau_{i+1}-\tau_{i}\right) \quad C=\text { const } \tag{2.7}
\end{equation*}
$$

is valid. Here $\varphi(\delta)$ is a continuous function, $\varphi(\delta) \rightarrow 0$ as $\delta \rightarrow 0$, and the estimate (2.7) is uniform with respect to all motions $\left.\{x \mid \cdot]_{\Delta}, u^{\circ}[\cdot]_{\Delta}\right\}=\left\{x\left[t, p_{0}, U^{\circ}\right]_{\Delta}, u^{\circ}[\cdot]_{\Delta}\right\}$ and instants τ_{i} with property (2.6), i.e., C and $\varphi(\delta)$ depend only on t_{0}, x_{0} and λ_{0}. Indeed, by the choise of function $u^{\circ}[\cdot] \in P\left(\left[\tau_{i}, \tau_{i+1}\right)\right)$

$$
r^{2}\left[\tau_{i+1}\right] \leqslant\left(\left\|x\left[\tau_{i+1}\right]_{\Delta}-z\left(\tau_{i+1}\right)\right\|+\gamma\right)^{2}
$$

where $:(t)$ is a solution of system (1.1) from the initial position $P_{* i}=\left\{\tau_{i}, y, u_{\tau_{i}}{ }^{\circ}[s]_{\Delta}\right\} \in W$ with $v(t) \equiv v^{*}, t \in\left[\tau_{i}, \tau_{i+1}\right) \quad\left(v^{*}\right.$ satisfies (2.3)), $y \in W_{\left.\tau_{i}, u_{\tau_{i}}{ }^{\circ}[s]_{\Delta} \text { is closest to } x\left[\tau_{i}\right]_{\Delta}\right) \text { and } u[t] \equiv u^{0}[t]_{\Delta} .}$. Since $\gamma \leqslant\left(\tau_{i+1}-\tau_{i}\right)^{2}$, by virtue of (2.6) we obtain

$$
r^{2}\left[\tau_{i+1}\right] \leqslant\left\|x\left[\tau_{i+1}\right]_{\Delta}-z\left(\tau_{i+1}\right)\right\|^{2}+2 \lambda\left(\tau_{i+1}-\tau_{i}\right)^{2}+\left(\tau_{i+1}-\tau_{i}\right)^{4}
$$

Hence, because of the assumptions on the right-hand side of (1.1), we obtain

$$
\begin{aligned}
& r^{2}\left[\tau_{i+1}\right] \leqslant \| x\left[\tau_{i}\right]_{\Delta}-y+\int_{\tau_{i}}^{\tau_{i+1}} f_{1}\left(t, x[t]_{\Delta} \cdot u^{0}[t]_{\Delta} \cdot u^{c}[t-\tau]_{\Delta}\right) d t+ \\
& \int_{\tau_{i}}^{\boldsymbol{\tau}_{i+1}} f_{z}\left(t, x[t]_{\Delta}, v[t]\right) d t-\int_{\tau_{i}}^{\tau_{i+1}} f_{1}\left(t, z(t), u^{\circ}[t]_{\Delta}, u^{\circ}[t-\tau]_{\Delta}\right) d t- \\
& \int_{\tau_{i}}^{\tau_{i+1}} i_{z}\left(t, z(t), v^{*}\right) d t \|^{2}+\left(2 \lambda+\left(\tau_{i+1}-\tau_{i}\right)^{2}\right)\left(\tau_{i+1}-\tau_{i}\right)^{2} \ll \\
& r^{2}\left[\tau_{\mathfrak{i}}\right]+2 \int_{\boldsymbol{\tau}_{i}}^{\boldsymbol{\tau}_{i+1}}\left(y-x\left[\tau_{i}\right]_{\Delta}\right)\left(i_{2}\left(t, x\left[\tau_{i}\right]_{\Delta}, v^{*}\right)-\right. \\
& \left.f_{z}\left(t, x\left[\tau_{i}\right]_{\Delta}, \nu[t]\right)\right) d t+C r^{2}\left[\tau_{i}\right]+\left(\tau_{i+1}-\tau_{i}\right) \varphi\left(\tau_{i+1}-\tau_{i}\right)
\end{aligned}
$$

By the choice of vector v^{*} we obtain estimate (2.7).
Now assume that the lemma is false. This signifies that we can find $\varepsilon>u$ such that for any $\delta_{0}>0$, in particular, for δ_{0} such that the estimate

$$
\begin{equation*}
\left(1+\theta-t_{0}\right) \exp \left[c\left(\theta-t_{0}\right)\right] \varphi(\delta) \leqslant \mathrm{e}^{2} \tag{2.8}
\end{equation*}
$$

is fulfilled for $\delta<\delta_{B}$, we can find a motion $\left.\left.\{x \mid \cdot]_{\Delta}, u^{\circ} \mid \cdot\right]_{\Delta}\right\}=\left\{x\left[t, \eta_{\theta}, U^{\circ} \|_{\Delta}, u^{\circ}\{]_{\Delta}\right\}\right.$ with $\delta(\Delta) \leqslant \delta_{B}$ and an instant $\tau_{i} \leqslant \tau_{i}$, such that (2.5) is not fulfilled. Let τ_{i} be the smallest partitioning instant τ_{i} at which condition (2.5) is not fulfilled. Then (2.6) is fulfilled for instants τ_{i} such that $\tau_{0} \leqslant \tau_{i}<\tau_{i}<\tau_{i 1}$, which implies estimate (2.7). If the uniform estimate (2.7) is fulfilled for all $\tau_{n} \leqslant \tau_{i} \cdots \tau_{i_{2}}$ then the estimate

$$
r^{2}\left|\tau_{i}\right| \leqslant\left(r^{2}\left[\tau_{0}\right]+\left(1+\tau_{i}-t_{0}\right) \varphi(\delta) \operatorname{cxp}\left[C\left(\tau_{i}-t_{0}\right)\right]\right.
$$

is fulfilled for all instants τ_{i} such that $\tau_{0} \leqslant \tau_{i} \leqslant \tau_{i}$, which can be verified by contradiction. Hence by virtue of condition $r\left[\tau_{0}\right]=0$ and of (2.8) follows $r\left[\gamma_{i, j}\right] \quad \varepsilon$, which contradicts the definition of $\tau_{i i_{i}}$.

Theorem 2.1. Let set W be (γ, u)-stable relative to $M, W-[W]$ and $W_{\vartheta} \in\left[M_{\forall}\right]$. Then, if $p_{0} \in W$, then the strategy U° extremal to W solves the problem of encounter with M.

Theorem 2.2. Let set W be (γ, v)-stable, $W=[W]$, and let $\varepsilon>0$ exist such that $M^{r} \cap W=G$. Then, if $p_{0} \in W$, then the strategy V^{n} extremal to W solves the problem of evading M.

Theorem 2.3. For any position p_{0} and set M, either the problem of evading M is solvable or the problem of encounter with M^{ε} is solvable for any $\varepsilon>0$.

The proofs of Theorems 2.1-2.3 rely on Lemma 2.1 and are analogous to the corresponding arguments in $/ 1,3 /$.

Note. The following result is valid for systems without time lag in the control: if the problem of encounter with the target set is solvable for an initial position then in the position space there exists a stable set containing the initial position and terminating on the target set; therefore, the strategy resolving the encounter problem can be constructed as one extremal to the stable set $/ 1,3 /$. In systems with aftereffect in the control this statement is, in general, false, as the following example shows. Consider the two-dimensional ($x,\left(r_{1}, x_{2}\right)$) system

$$
\begin{array}{ll}
x_{1} \cdot \begin{cases}1+\left(t-x_{2}(t)\right) v(i), & t \equiv \mid-1, v) \\
1-x_{2}(t) v(t), & t \in[0,1] \\
x_{2}=u(t-r) \\
t_{0}=-1, v=1, \tau=1,|z|=1,|r|=1\end{cases}
\end{array}
$$

Let the target set M consist of positions $p=\left\{t, x_{1}, x_{2}, u(s)\right\}$, where $t=0,1, x_{1}=4, x_{2}=0, u(s)$ is any function from $P([-i, 0)$. By W we denote the set of positions from which the problem of encounter with M is solvable. The set $W_{-1} \neq \varnothing$ because the encounter problem is solvable from the position $p_{0}=\left\{t_{0}, x_{1}{ }^{\circ}, x_{2}{ }^{\circ}, u_{f_{0}}(s)\right\}$, where $t_{0}=-1, x_{1}{ }^{\circ} \cdots-1, x_{2}{ }^{0}=-1, u_{t_{0}}(s) \equiv 1, s \equiv 1-\tau$, (0). However, $W_{0}=\varnothing$ and, therefore, set W cannot be stable.
3. Let us show that the fundamental assertion in differential game theory, namely, the theorem on the alternative $/ 1 /$, is valid for the differential encounter-evasion game made up of Problems 1 and 2.

In the position space let there be given a sequence of sets $\left\{W^{(j)}, j=1,2, \ldots\right\}$ with the properties:

1) $W^{(j+1)}\left[W^{(j)}\right.$, 2) $W^{(j)}=\left[W^{(j)}\right]$, 3) set $W^{(j)}$ is (γ, u)-stable relative to $M^{(j,}$ 4) $W_{v^{(j)}}-$ $M_{*}^{\varepsilon_{j}}, \varepsilon_{j}=1 / j$. Let t_{0}, x_{0} and number $\lambda_{0}>0$ also be given. On the set of positions $p_{*}=$ $\left\{t_{*}, x_{*}, u_{*}(s)\right\}$ we introduce the function $x\left(p_{*}\right)-x\left(p_{*},\left\{W^{(j)}\right\}, t_{0}, x_{0}, \lambda_{0}\right)$:

$$
x\left(p_{*}\right)=\inf _{j}\left\{1 / j \mid 1 / j>r^{2}\left(p_{*}, \quad W^{(j)}\right)\left(1+\vartheta-t_{*}\right) \exp \times\left[C\left(\vartheta-t_{*} H\right]\right.\right.
$$

where function $r\left(p_{*}, W\right)$ is defined by (2.4) and $C=C\left(t_{0}, x_{0}, \lambda_{0}\right)$ is the constant in estimate (2.7). If the set

$$
\left\{1 / j \mid 1 / j>r^{2}\left(p_{*}, \quad W^{(j)}\right)\left(1+\vartheta-t_{*}\right) \exp \left[C\left(\hat{\theta}-t_{*}\right)\right]\right\}
$$

is empty, we assume $x\left(p_{*}\right)=+\infty$. We say that a strategy U^{2} is extremal to the sequence of sets $\left\{W^{(j)}\right\}$ with properties 1$\left.)-3\right)$ if $/ 4,5 /: U^{00}$ associates with position p_{*} and number $t^{*} \in$ $\left(t_{*}, \vartheta\right]$ a function $u^{\circ \circ}(t) \in P\left(\left[t_{*}, t^{*}\right)\right)$ by the rule:
1°. Let $x\left(p_{*}\right)=+\infty$. Then $u^{\infty}(t)$ is any function from $P\left(\left[t_{*}, t^{*}\right)\right)$.
2°. Let $x\left(p_{*}\right)<+\infty$. We find the number $j_{0}=j_{0}\left(p_{*}\right)$ from the conditions: if $x\left(p_{*}\right)=0$, then $1 / j_{0}<t^{*}-t_{*}$; if $0<x\left(p_{*}\right)<+\infty$, then $1 / j_{0}=x\left(p_{*}\right)$. As $u^{\circ}(\cdot)$ we take the function $u^{\circ}(t) \in P\left(\left[t_{*}, t^{*}\right)\right)$ designated as the strategy U° extremal to the (γ, u)-stable set $W\left(j_{0}\right)$.

The following statements are valid.

Lemma 3.1. Let a sequence of sets $\left\{W^{(j)}\right\}$ with properties 1$)-3$), a position $p_{0}=\left\{t_{0}, x_{0}\right.$, $\left.u_{0}(s)\right\} \in \cap_{j} W^{(j)}$ and $\lambda_{0} \leqslant 1 / 4$ be specified. Then for any $\beta, 0<\beta<\lambda_{0}$ we can find $\delta_{0}>0$ such that for every motion $\left\{x[\cdot]_{\Delta}, u^{\circ \circ}[\cdot]_{\Delta}\right\}=\left\{x\left[t, p_{0}, U^{\circ \circ}\right]_{\Delta}, u^{\infty}[t]_{\Delta}\right\}$ with $\delta(\Delta) \leqslant \delta_{0}$ the condition $x\left[\tau_{i}\right]=x\left(p_{i}\right)=x\left(\left\{\tau_{i}, x\left[\tau_{i}\right]_{\Delta}, u_{\tau_{i}}{ }^{\circ 0}[s]_{\Delta}\right\}\right)<\beta$ is satisfied for all $\tau_{i}<\tau_{i_{1}}$, where either $\tau_{i_{1}}$ is the instant τ_{i} when the function $u^{\circ 0}[t] \in P\left(\left[\tau_{i}, \tau_{i+1}\right)\right.$, chosen as the function $u^{\circ}[t]$, is first fixed from condition (2.2) or $\tau_{i_{1}}=\vartheta$ if such an instant does not exist.

Lemma 3.2. In the hypotheses of Lemma 3.1 let the sequence of sets $\left\{W^{(j)}\right\}$ possess the property 4) as well. Then strategy $U^{\circ 0}$ solves the problem of encounter with M for the position p_{0}.

From Theorem 2.3 and Lemma 3.2 follows
Theorem 3.1 (the alternative). For any position p_{0} and any set M, either the problem of encounter with M or the problem of evading M is solvable.

Indeed, suppose that the problem of evading M is unsolvable from position p_{0}. Then by Theorem 2.3 the problem of encounter with $M^{r .3}$ is solvable for any $\varepsilon / 3>0$. This signifies that we can find a strategy U such that for the number $\varepsilon / 3$ we can find a number $\delta_{0}=$ $\delta_{0}(\varepsilon / 3, U)>0$ such that for every motion $\left\{x[t]_{\Delta}, u[t]_{\Delta}\right\}= \begin{cases}x & \left.\left.p_{0}, \quad U\right]_{\Delta}, u[t]_{\Delta}\right\} \quad \text { with } \delta(\Delta) \leqslant\end{cases}$ δ_{0} there exists $\eta \in\left[t_{0}, \vartheta\right]$ such that

$$
x[\eta]_{\Delta} \in M_{\eta, u_{\eta}[\varepsilon]_{\Delta}}^{2 \varepsilon 3}
$$

Along such motions we compose the set $W(\varepsilon, U)$ of positions $\{t, x, u(s)\}, t \in\left[t_{0}, \eta\right], x \cdots x[t]_{\Delta}$, $u(s)=-u_{t}[s]_{A}$. The set $W(\varepsilon, U)$ is (γ, u)-stable relative to $M^{v e} 3$ and $W(\varepsilon, U)_{\theta} \subset M_{v}^{2 q}$. But then the set $W(\varepsilon)-\bigcup W(\varepsilon, U)$, where the union is taken over all strategies U solving the problem of encounter with $M^{\beta^{3}}$ for p_{0}, is (γ, u)-stable relative to $M^{2 \varepsilon, 3}$ and $W(\varepsilon)_{\vartheta} \subset M_{v}^{v e s}$. We take the sequence $\varepsilon_{j} \cdots 1 / j, j=1,2, \ldots ;$ then the corresponding sequence of sets $\left\{W^{(j)} \ldots\right.$ $\left.\left[\boldsymbol{W}\left(\varepsilon_{j}\right)\right], j-1,2, \ldots\right\}$ possesses properties 1)-4) and $p_{0} \in \cap j W^{(j)}$. Consequently, by Lemma 3.2, the problem of encounter with M is solvable. We note that, in general, the set $\cap_{j} W^{(j)}$ is not (γ, u)-stable (see the example).

REFERENCES

1. KRASOVSKII N.N. and SUBBOTIN A.I., Positional Differential Games. Moscow, NAUKA, 1974.
2. KRASOVSKII N.N. and OSIPOV Iu.S., Linear differential-difference games. Dokl. Akad. Nauk, SSSR, Vol.197, No.4, 1971.
3. OSIPOV Iu.S., Differential games for systems with aftereffect. Dokl. Akad. Nauk, SSSR, Vol. 196, No.4, 1971.
4. OSIPOV Iu.S., KRIAZHIMSKII A.V. and OKHEZIN S.P., Control problems in distributed-parameter systems. IN: Dynamics of Controlled Systems. Novosibirsk, NAUKA, 1979.
5. KRIAZHIMSKII A.V., On the theory of positional differential encounter-evasion games. Dokl. Akad. Nauk, SSSR, Vol.239, No.4, 1978.
6. OSIPOV Iu.S. and PIMENOV V.G., On the theory of differential games in systems with aftereffect. PMM Vol. 42 , No.6, 1978.

[^0]: *Prikl.Matem.Mekhan,45,No.2,223-229,1981

