UDC 62,50

ON POSITIONAL CONTROL UNDER AFTEREFFECT IN THE CONTROLLING FORCES*

Iu.S. OSIPOV and V.G. PIMENOV

Positional control problems are studied for systems with aftereffect in the controls. The existence of an equilibrium situation is proved in an encounter-evasion problem and a method is indicated for constructing the desired controls. The article abuts the investigations in /1-5/ and is a continuation of /6/.

1. The controlled system

 $\begin{aligned} x^{*}(t) &= f_{1}(t, x(t), u(t), u(t - \tau)) + f_{2}(t, x(t), v(t)) \\ x &\in R^{n}, u \in P \subset R^{r_{1}}, v \in Q \subset R^{r_{2}}, \\ t \in [t_{0}, \vartheta], \tau = \text{const} > 0 \end{aligned}$ (1.1)

is specified. Here x is the phase vector, u and v are controls, P and Q are compacta $(\mathbb{R}^n \text{ is an } u \text{ -dimensional Euclidean space})$, the functions $f_1(t, x, u, w)$ and $f_2(t, x, v)$ are defined, are continuous in all arguments, and satisfy a local Lipschitz condition in x on $[t_0, \vartheta] \times \mathbb{R}^n \times \mathfrak{and}$ and $[t_0, \vartheta] \times \mathbb{R}^n \times Q$, respectively, and in their domains

 $|| f_1(t, x, u, w) + f_2(t, x, v) || \le \kappa (1 + || x ||), \kappa = \text{const}$

Let U_* be some set of functions on the interval $[-\tau, 0]$ and $M_* \subset \mathbb{R}^n$. Two problems are examined. The first consists in the construction of a control u by the feedback principle $u[t] = u(t; x[t], u[t+s], -\tau \leqslant s < 0)$, taking the vector x onto M_* at some instant $t_* \leqslant \vartheta$ for any admissible realization of control v, and in such a way that the condition $u[t_*+s] \in U_*$ is fulfilled (this is an encounter problem /6/). The second problem is to construct a control v by the feedback principle $v[t] = v(t; x[t]; u[t+s], -\tau \leqslant s < 0)$, guaranteeing that the phase vector of system (1.1) evades contact with M_* for any admissible realization of control u (an evasion problem). Certain variants of these problems were studied in /6/ from the viewpoint of differential game theory developed in /1-3/. In the present paper, in constrast to /6/, we examine the general situation, obtain the necessary and sufficient conditions for the solvability of the problems posed, and indicate a method for constructing the optimal controls.

Let us pose the problems more precisely. Let $P(\sigma)$ be a collection of all measurable functions $u(\cdot)$ on set σ with values in $P, Q(\sigma)$ be a collection of all measurable functions $v(\cdot)$ on set σ with values in Q. Every triple $p = \{t; x; u(s), -\tau \leqslant s < 0\}$, where $t \in [t_0, \vartheta], x \in \mathbb{R}^n, u(\cdot) \in P([-\tau, 0))$, is called a position. A rule that associates a function u(t) from $P([t_{\ast}, t^{\ast}))$ (v(t) from $Q([t_{\ast}, t^{\ast}))$ with a position $p_{\ast} = \{t_{\ast}, x_{\ast}, u_{\ast}(s)\}$ and a number $t^{\ast} \in (t_{\ast}, \vartheta]$, is called a strategy U(V). Let there be specified a position $p_0 = \{t_0, x_0, u_0(s)\}$ and a partitioning Δ of interval $[t_0, \vartheta]$ by the points $\tau_0 = t_0 < \tau_1 < \cdots < \tau_{N(\Delta)} = \vartheta, \delta(\Delta) = \max_i (\tau_{i+1} - \tau_i)$. We define an approximate motion of system (1.1), corresponding to strategy U, as the pair $\{x [\cdot]_{\Delta}, u[\cdot]_{\Delta}\}$, where the absolutely continuous function $x [\cdot]_{\Delta} = x[t]_{\Delta} = x[t, p_0, U]_{\Delta}, t_0 \leqslant t \leqslant \vartheta$, and the control $u[\cdot]_{\Delta} \in P([t_0 - \tau, \vartheta])$ satisfy the conditions

$$x [t_0]_{\Delta} = x_0, \ u [t_0 + s]_{\Delta} = u_0 (s), \ -\tau \leqslant s < 0$$
(1.2)

in addition, the equality

$$\mathbf{x} [t]_{\Delta} = f_1 (t, \mathbf{x} [t]_{\Delta}, \mathbf{u} [t]_{\Delta}, \mathbf{u} [t - \tau]_{\Delta}) + f_2 (t, \mathbf{x} [t]_{\Delta}, \mathbf{v} [t])$$

$$(1.3)$$

is fulfilled for almost all $t \in [t_0, \vartheta]$ and for $t \in [\tau_i, \tau_{i+1}) u[t]_{\Delta}$ is a function from $P([\tau_i, \tau_{i+1}))$, designated as the strategy U with respect to position $\{\tau_i, x [\tau_i]_{\Delta}, u_{\tau_i} [s]_{\Delta}\}$ and to number τ_{i+1} . Here and subsequently, $u_t(s) = u(t+s), -\tau \leqslant s < 0$. In (1.3) $v[t] \in Q([t_0, \vartheta])$ is some realization of control v. We define an approximate motion of system (1.1), corresponding to strategy V, as the pair $\{x [\cdot]_{\Delta}, u[\cdot]\}$, where the absolutely continuous function $x [\cdot]_{\Delta} = x[t]_{\Delta} = x[t]$, $p_0, V]_{\Delta}, t_0 \leqslant t \leqslant \vartheta$, satisfies condition (1.2) and for almost all $t \in [t_0, \vartheta]$ satisfies the equations

^{*}Prikl.Matem.Mekhan,45,No.2,223-229,1981

$$x^{\star}[t]_{\Delta} = f_1(t, x[t]_{\Delta}, u[t], u[t-\tau]) + f_2(t, x[t]_{\Delta}, v[t]_{\Delta})$$

where for $t \in [\tau_i, \tau_{i+1})$, $v[t]_{\Delta}$ is a function from $Q([\tau_i, \tau_{i+1}))$, designated as the strategy V with respect to position $\{\tau_i, x [\tau_i]_\Delta, u_{\tau_i}[s]\}$ and to number τ_{i+1} . The function $u [\cdot] = u [t] \subset P([t_0 - t_0])$ $[au, \ artheta])$ is some realization of control u, satisfying the condition $u [t_0 + s] = u_0 (s), - au \leqslant s < 0$.

Let [A] be the closure of $A \subset R^n$ and A^ε be an open ε -neighborhood of A. Let some set M be prescribed in the position space. By M_t we denote the section of M by t (i.e., the set of pairs $\{x, u(s)\}$ such that $\{t, x, u(s)\} \in M$; by $M_{t, u(s)}$ we denote the sections by t and u(s). By [M] and M^{ε} we denote collections of positions $\{t, x, u(s)\}$ such that $x \in [M_{t, u(s)}]$ and $x \Subset M^{\varepsilon}_{t, u(s)}$, respectively.

Problem 1 (encounter). System (1.1), position p_0 and set M are prescribed. Construct a strategy U^{st} with the property: for any $\,\epsilon>0\,$ we can find $\,\delta_0>0$ such $\,$ that the condition

$$x [\eta]_{\Delta} \bigoplus M^{\varepsilon}_{\eta, u^{\circ}_{\eta}[s]_{\delta}}$$

is fulfilled at some instant $\eta \in [t_0, \vartheta]$ for every motion $\{x [t]_{\Delta}, u^{\circ} [\cdot]_{\Delta}\} = \{x [t, p_0, U]_{\Delta}^{\circ}, u^{\circ} [\cdot]_{\Delta}\}$ with $\delta(\Delta) \leqslant \delta_0$.

Problem 2 (evasion). System (1.1), position p_0 and set M are prescribed. Construct a strategy V° with the property: numbers $\ \epsilon>0$ and $\ \delta_0>0$ exists such that the condition

$$x[\eta]_{\Delta} \notin M^{\varepsilon}_{\eta, u_{\eta}[s]}$$

is fulfilled for every motion $\{x [\cdot]_{\Delta}, u [\cdot]\} = \{x [t, p_0, V^{\circ}]_{\Delta}, u [\cdot]\}$ with $\delta_{\bullet}(\Delta) \leqslant \delta_0$, for any instant $\eta \in [t_0, \vartheta]$.

2. Let us indicate the conditions for the solvability of the problems posed. Let some set W be specified in the position space. We say that set W is (γ, u) -stable relative to M if for any $p_* = \{t_*, x_*, u_*(s)\} \in W, t^* \in (t_*, \vartheta], v(\cdot) \in Q([t_*, t^*))$ and $\gamma > 0$ we can find a function $u(\cdot) \subseteq P(|t_*, t^*))$ such that

$$x(t^*, p_*, u(\cdot), v(\cdot)) \bigoplus W_{t^*, u_{t^*}(s)}^{\gamma}$$

$$(2, 1)$$

or if an instant $\eta \in [t_*, t^*]$ exists such that

$$\begin{aligned} x(\eta, p_{\star}, u(\cdot), v(\cdot)) &\in M^{\gamma}_{\eta, u_{\eta}(s)} \\ u_{\eta}(s) &= \begin{cases} u(\eta - s), & s \in [t_{\star} - \eta, 0) \\ u_{\star}(\eta + s - t_{\star}), & s \in [-\tau, t_{\star} - \eta) \end{cases} \end{aligned}$$
(2.2)

Here $x(t, p_*, u(\cdot), v(\cdot))$ is a solution of (1.1) from position p_* with the functions $u(\cdot)$ and $v\left(\cdot\right)$ selected (i.e., $x\left(t_{*}, p_{*}, u\left(\cdot\right), v\left(\cdot\right)\right) = x_{*}$ and $u\left(t_{*} + s\right) = u_{*}\left(s\right), -\tau \leqslant s < 0$). We say that set W is (γ, v) -stable if for any $\rho_* \in W$, $t^* \in (t_*, \vartheta]$, $u(\cdot) \in P([t_*, t^*))$ and number $\gamma > 0$ we can find a function $v(\cdot) \in Q([t_*, t^*))$ such that condition (2.1) is fulfilled.

Let W be a set (γ, u) -stable relative to M , whose sections $W_{l, u(s)}$ are closed in R^n , i.e., W = [W]. A strategy U° associating with position $p_{*} = \{t_{*}, x_{*}, u_{*}(s)\}$ and number $\begin{array}{c} l^{*} \in (t_{*}, \vartheta] \text{ a function } u^{\circ}(t) \in P\left([t_{*}, t^{*})\right) \text{ by the rule:} \\ 1^{\circ}. \text{ Let } W_{t_{*}, u_{*}(\circ)} = \emptyset. \text{ Then } u^{\circ}(t) \text{ is any function from } P\left([t_{*}, t^{*})\right); \end{array}$

2⁰. Let $W_{t_s, u_{\bullet}(s)} \neq \emptyset$ and y be a vector from $W_{t_s, u_{\bullet}(s)}$, closest to x_{*} in the metric of R^n , is called a strategy extremal to this set W. We choose the vector $v^* \Subset O$ from the condition

$$(y - x_*) f_2(t_*, x_*, v^*) = \min_{v \in Q} \{ (y - x_*) f_2(t_*, x_*, v) \}$$
(2.3)

Then we find a function $\ u^\circ (t) \subset P \ ([t_*, t^*))$ from the condition of $\ (\gamma, u)$ -stability of set W with respect to the quantities $p_{**}=\{t_*,\,y,\,u_*\,(s)\} \subset \dot{W}, \ t^*,$ function v^* $(t)=v^*, \ t_*\leqslant t < t^*$ and number $\gamma \leqslant (t^* - t_*)^2$.

Let W = [W]. A strategy V' associating with position $p_* = \{t_*, x_*, u_*(s)\}$ and number $t^* \in (t, \vartheta]$ a function $v^\circ(t) \in Q(\{t_*, t^*\})$ by the rule: 1°. Let $W_{t_*, u_*(s)} = \emptyset$. Then $v^\circ(t)$ is any function from $Q([t_*, t^*))$;

 $2^{\mathbf{0}}$. Let $W_{t_{s},\ u_{s}(s)}
eq \emptyset$ and vector $y\in W_{t_{s},\ u_{s}(s)}$ be closest to x_{s} in R_{s}^{n} is called a strategy extremal to W. Let vector $v^\circ \Subset Q$ satisfy the condition

$$(y - x_*) f_2(t_*, x_*, v^\circ) - \max_{v \in Q} \{(y - x_*)f_2(t_*, x_*, v)\}$$

Then $v^{\circ}(t) \equiv v^{\circ}, t \in [t_*, t^*).$

On the space of positions $p_* = \{t_*, x_*, u_*(s)\}$ we introduce the function

$$r(p_{*}, W) = \begin{cases} \inf \{ \| x_{*} - y \| \}, & W_{l_{*}, u_{*}(s)} \neq C \\ y \in W_{l_{*}, u_{*}(s)} \\ + \infty, & W_{l_{*}, u_{*}(s)} = C \end{cases}$$
(2.4)

Lemma 2.1. Let set W be (γ, u) -stable relative to M and W = [W]. Then, if $p_0 \in W$, the strategy U° is extremal to W and ensures the condition: for any $\varepsilon > 0$ we can find $\delta_0 > 0$ such that for every motion $\{x [\cdot]_{\Delta}, u^\circ [\cdot]_{\Delta}\} = \{x [t, p_0, U^\circ]_{\Delta}, u^\circ [\cdot]_{\Delta}\}$ with $\delta(\Delta) \leqslant \delta_0$ the condition

$$r\left[\tau_{i}\right] = r\left(p_{i}, W\right) = r\left(\left\{\tau_{i}, x\left[\tau_{i}\right]_{\Delta}, u_{\tau_{i}}^{*}\left[s\right]_{\Delta}\right\}, W\right) \leqslant \varepsilon$$

$$(2.5)$$

is fulfilled for all $\tau_i \leqslant \tau_{i_i}$, where either τ_{i_i} is the instant τ_i at which the function $u^{\circ}[t] \equiv P([\tau_i, \tau_{i+1}))$ is first designated as the strategy U° from the condition (2.2) or $\tau_{i_i} = \vartheta$ if such an instant does not exist.

Let us sketch the lemma's proof. Let $X(t_0, x_0)$ be the set of solutions of system (1.1), corresponding to all possible functions $u(\cdot) \in P([t_0 - \tau, \vartheta]), v(\cdot) \in Q([t_0, \vartheta])$ with initial conditions $x(t_0) = x_0$. Let number $\lambda_1 - \lambda_1(t_0, x_0)$ be such that $||x(t)|| \leq \lambda_1, t \in [t_0, \vartheta], r(\cdot) \in X(t_0, x_0)$, and $\lambda_0 > 0$ be some number. We denote

$$\begin{split} X (t_0, x_0, \lambda_0) &= \bigcup X (t_{\bigstar}, x_{\bigstar}) \\ t_{\bigstar} &\in [t_0, \vartheta], \ \| x_{\bigstar} \| \leqslant \lambda_1 (t_0, x_0) + \lambda_0 \end{split}$$

Then all the functions $x(\cdot) \in X(t_0, x_0, \lambda_0)$ are uniformly bounded by some constant $\lambda = \lambda(t_0, x_0, \lambda_0)$. Let us show that if the condition

$$r \left[\tau_{i}\right] \leqslant \lambda_{0} = \varepsilon \tag{2-6}$$

is fulfilled for the motion $\{x [\cdot]_{a}, u^{\circ} [\cdot]_{b}\}$ and the instant $\tau_i < \tau_i$, then the estimate

$$\tau^{2}[\tau_{i+1}] \leq r^{2}[\tau_{i}] (1 + C(\tau_{i+1} - \tau_{i})) + (\tau_{i+1} - \tau_{i}) \varphi(\tau_{i+1} - \tau_{i}) C = \text{const}$$
(2.7)

is valid. Here $\varphi(\delta)$ is a continuous function, $\varphi(\delta) \to 0$ as $\delta \to 0$, and the estimate (2.7) is uniform with respect to all motions $\{x [\cdot]_{\Delta}, u^{\circ} [\cdot]_{\Delta}\} = \{x [t, p_0, U^{\circ}]_{\Delta}, u^{\circ} [\cdot]_{\Delta}\}$ and instants τ_i with property (2.6), i.e., *C* and $\varphi(\delta)$ depend only on t_0, x_0 and λ_0 . Indeed, by the choise of function $u^{\circ} [\cdot] \in P([\tau_i, \tau_{i+1}))$

$$r^{2}\left[au_{i+1}
ight] \leqslant \left(\parallel x\left[au_{i+1}
ight]_{\Delta} - z\left(au_{i+1}
ight)\parallel + \gamma
ight)^{2}$$

where z(t) is a solution of system (1.1) from the initial position $p_{*i} = \{\tau_i, y, u_{\tau_i^\circ}[s]_\Delta\} \in W$ with $v(t) \equiv v^\bullet, t \in [\tau_i, \tau_{i+1})$ (v^\bullet satisfies (2.3)), $y \in W_{\tau_i, u_{\tau_i^\circ}[s]_\Delta}$ is closest to $x[\tau_i]_\Delta$) and $u[t] \equiv u^\circ[t]_\Delta$. Since $\gamma \leqslant (\tau_{i+1} - \tau_i)^2$, by virtue of (2.6) we obtain

$$r^{2}[\tau_{i+1}] \leq \|x[\tau_{i+1}]_{\Delta} - z(\tau_{i+1})\|^{2} + 2\lambda (\tau_{i+1} - \tau_{i})^{2} + (\tau_{i+1} - \tau_{i})^{4}$$

Hence, because of the assumptions on the right-hand side of (1.1), we obtain

$$r^{2}[\tau_{i+1}] \leqslant ||x[\tau_{i}]_{\Delta} - y + \int_{\tau_{i}}^{\tau_{i+1}} f_{1}(t, x[t]_{\Delta}, u^{\circ}[t]_{\Delta}, u^{\circ}[t-\tau]_{\Delta}) dt + \\ \int_{\tau_{i}}^{\tau_{i+1}} f_{2}(t, x[t]_{\Delta}, v[t]) dt - \int_{\tau_{i}}^{\tau_{i+1}} f_{1}(t, z(t), u^{\circ}[t]_{\Delta}, u^{\circ}[t-\tau]_{\Delta}) dt - \\ \int_{\tau_{i}}^{\tau_{i+1}} f_{2}(t, z(t), v^{*}) dt ||^{2} + (2\lambda + (\tau_{i+1} - \tau_{i})^{2}) (\tau_{i+1} - \tau_{i})^{2} \leqslant \\ r^{2}[\tau_{i}] + 2 \int_{\tau_{i}}^{\tau_{i+1}} (y - x[\tau_{i}]_{\Delta}) (f_{2}(t, x[\tau_{i}]_{\Delta}, v^{*}) - \\ f_{2}(t, x[\tau_{i}]_{\Delta}, v[t])) dt + Cr^{2}[\tau_{i}] + (\tau_{i+1} - \tau_{i}) \phi(\tau_{i+1} - \tau_{i}) \end{cases}$$

By the choice of vector v^* we obtain estimate (2.7).

Now assume that the lemma is false. This signifies that we can find $\epsilon > 0$ such that for any $\delta_0 > 0$, in particular, for δ_0 such that the estimate

$$(1 + \vartheta - t_0) \exp \left[c \left(\vartheta - t_0 \right) \right] \varphi \left(\delta \right) \leqslant \varepsilon^2$$
(2.8)

is fulfilled for $\delta < \delta_0$, we can find a motion $\{x \mid \cdot l_{\Delta}, u^\circ \mid \cdot l_{\Delta}\} = \{x \mid t, p_0, U^\circ\}_{\Delta}, u^\circ \mid \cdot l_{\Delta}\}$ with $\delta \mid \Delta \mid \leq \delta_0$ and an instant $\tau_i \leq \tau_{i_i}$ such that (2.5) is not fulfilled. Let τ_{i_i} be the smallest partitioning instant τ_i at which condition (2.5) is not fulfilled. Then (2.6) is fulfilled for instants τ_i such that $\tau_0 \leq \tau_i < \tau_{i_i} < \tau_{i_i}$, which implies estimate (2.7). If the uniform estimate (2.7) is fulfilled for all $\tau_0 \leq \tau_i < \tau_{i_i}$, then the estimate

$$||\mathbf{\tau}_i| \leq (r^2 | \mathbf{\tau}_0] + (1 + \mathbf{\tau}_i - t_0) \varphi(\delta) \exp[C(\mathbf{\tau}_i - t_0)]|$$

is fulfilled for all instants τ_i such that $\tau_0 < \tau_i \leqslant \tau_i$, which can be verified by contradiction. Hence by virtue of condition $r[\tau_0] = 0$ and of (2.8) follows $r[\tau_{i_2}] - \varepsilon$, which contradicts the definition of τ_{i_2} .

Theorem 2.1. Let set W be (γ, u) -stable relative to M, W = [W] and $W_0 \in [M_0]$. Then, if $p_0 \in W$, then the strategy U° extremal to W solves the problem of encounter with M_1 .

Theorem 2.2. Let set W be (γ, v) -stable, W = [W], and let $\varepsilon > 0$ exist such that $M^{\nu} \cap W = \emptyset$. Then, if $p_0 \in W$, then the strategy V° extremal to W solves the problem of evading M.

Theorem 2.3. For any position P_0 and set M, either the problem of evading M is solvable or the problem of encounter with M^{ε} is solvable for any $\varepsilon > 0$.

The proofs of Theorems 2.1-2.3 rely on Lemma 2.1 and are analogous to the corresponding arguments in /1, 3/.

Note. The following result is valid for systems without time lag in the control: if the problem of encounter with the target set is solvable for an initial position then in the position space there exists a stable set containing the initial position and terminating on the target set; therefore, the strategy resolving the encounter problem can be constructed as one extremal to the stable set /1,3/. In systems with aftereffect in the control this statement is, in general, false, as the following example shows. Consider the two-dimensional $(x - (x_1, x_2))$ system

$$\begin{array}{l} x_1 & = \begin{cases} 1 + (t - x_2(t)) \ v(t), & t \in [-1, 0) \\ 1 - x_2(t) \ v(t), & t \in [0, 1] \end{cases} \\ x_2 & = u(t - \tau) \\ t_0 & = -1, \vartheta = 1, \tau = -1, |u| = -1, |v| = -1 \end{cases}$$

Let the target set M consist of positions $p = \{t, x_1, x_2, u(s)\}$, where $t = \vartheta - 4, x_1 = 4, x_2 = 0, u(s)$ is any function from $P((-\tau, 0))$. By W we denote the set of positions from which the problem of encounter with M is solvable. The set $W_{-1} \neq \emptyset$ because the encounter problem is solvable from the position $p_0 = \{t_0, x_1^\circ, x_2^\circ, u_{t_1}(s)\}$, where $t_0 = -1$, $x_1^\circ = -1$, $u_{t_0}(s) \equiv 1$, $s \in [-\tau, 0)$. However, $W_0 = \emptyset$ and, therefore, set W cannot be stable.

3. Let us show that the fundamental assertion in differential game theory, namely, the theorem on the alternative /1/, is valid for the differential encounter-evasion game made up of Problems 1 and 2.

In the position space let there be given a sequence of sets $\{W^{(j)}, j=1, 2, \ldots\}$ with the properties:

1) $W^{(j+1)} \subset W^{(j)}$, 2) $W^{(j)} = [W^{(j)}]$, 3) set $W^{(j)}$ is (γ, u) -stable relative to M^{ε_j} , 4) $W_0^{(j)} \subset M_0^{\varepsilon_j}$, $\varepsilon_j = 1/j$. Let t_0 , x_0 and number $\lambda_0 > 0$ also be given. On the set of positions $p_* = \{t_*, x_*, u_*(s)\}$ we introduce the function $\varkappa (p_*) = \varkappa (p_*, \{W^{(j)}\}, t_0, x_0, \lambda_0)$:

 $\varkappa (p_*) = \inf_j \{1 / j \mid 1 / j > r^2 (p_*, W^{(j)}) (1 + \vartheta - t_*) \exp \times [C (\vartheta - t_*)] \}$

where function $r(p_*, W)$ is defined by (2.4) and $C = C(t_0, x_0, \lambda_0)$ is the constant in estimate (2.7). If the set

$$\{1 / j + 1 / j > r^2 (p_*, W^{(j)}) (1 + \vartheta - t_*) \exp [C (\vartheta - t_*)]\}$$

is empty, we assume $\varkappa(p_*) = +\infty$. We say that a strategy $U^{\circ\circ}$ is extremal to the sequence of sets $\{W^{(j)}\}$ with properties 1)—3) if /4,5/: $U^{\circ\circ}$ associates with position p_* and number $t^* \in (t_*, \vartheta]$ a function $u^{\circ\circ}(t) \in P([t_*, t^*))$ by the rule:

 1° . Let $\varkappa(p_{*}) = +\infty$. Then $u^{\circ\circ}(t)$ is any function from $P([t_{*}, t^{*}))$.

 2° . Let $\varkappa(p_{*}) < +\infty$. We find the number $j_{0} = j_{0}(p_{*})$ from the conditions: if $\varkappa(p_{*}) = 0$, then $1/j_{0} < t^{*} - t_{*}$; if $0 < \varkappa(p_{*}) < +\infty$, then $1/j_{0} = \varkappa(p_{*})$. As $u^{\circ\circ}(\cdot)$ we take the function $u^{\circ}(t) \in P((t_{*}, t^{*}))$ designated as the strategy U° extremal to the (γ, u) -stable set $W^{(j_{*})}$.

The following statements are valid.

Lemma 3.1. Let a sequence of sets $\{W^{(j)}\}$ with properties 1)-3, a position $p_0 = \{t_0, x_0, u_0(s)\} \in \bigcap_j W^{(j)}$ and $\lambda_0 \leqslant 1/4$ be specified. Then for any $\beta, 0 < \beta < \lambda_0$ we can find $\delta_0 > 0$ such that for every motion $\{x \ [\cdot]_{\Delta}, u^{\circ\circ}[\cdot]_{\Delta}\} = \{x \ [t, p_0, U^{\circ\circ}]_{\Delta}, u^{\circ\circ}[t]_{\Delta}\}$ with $\delta(\Delta) \leqslant \delta_0$ the condition $\kappa \ [\tau_i] = \kappa \ (p_i) = \kappa \ (\{\tau_i, x \ [\tau_i]_{\Delta}, u_{\tau_i}^{\circ\circ}[s]_{\Delta}\}) < \beta$ is satisfied for all $\tau_i < \tau_i$, where either τ_i is the instant τ_i when the function $u^{\circ\circ}[t] \in P([\tau_i, \tau_{i+1}), \text{ chosen as the function } u^{\circ}[t]]$, is first fixed from condition (2,2) or $\tau_{i_1} = \vartheta$ if such an instant does not exist.

Lemma 3.2. In the hypotheses of Lemma 3.1 let the sequence of sets $\{W^{(j)}\}$ possess the property 4) as well. Then strategy $U^{\circ\circ}$ solves the problem of encounter with M for the position p_0 .

From Theorem 2.3 and Lemma 3.2 follows

Theorem 3.1 (the alternative). For any position p_0 and any set M, either the problem of encounter with M or the problem of evading M is solvable.

Indeed, suppose that the problem of evading M is unsolvable from position p_0 . Then by Theorem 2.3 the problem of encounter with $M^{\varepsilon,3}$ is solvable for any $\varepsilon/3 > 0$. This signifies that we can find a strategy U such that for the number $\varepsilon/3$ we can find a number $\delta_0 = \delta_0$ ($\varepsilon/3$, U > 0 such that for every motion $\{x [t]_{\Delta}, u [t]_{\Delta}\} = \{x [t, p_0, U]_{\Delta}, u [t]_{\Delta}\}$ with $\delta(\Delta) \leqslant \delta_0$ there exists $\eta \in [t_0, \vartheta]$ such that

$$x[\eta]_{\Delta} \in M^{2\varepsilon-3}_{\eta, n_{\eta}[s]}$$

Along such motions we compose the set $W(\varepsilon, U)$ of positions $\{t, x, u(s)\}, t \in [t_0, \eta], x = x[t]_{\Delta}, u(s) = u_t[s]_{\Delta}$. The set $W(\varepsilon, U)$ is (γ, u) -stable relative to $M^{2\varepsilon,3}$ and $W(\varepsilon, U)_{\theta} \subset M^{2\varepsilon,3}_{\theta}$. But then the set $W(\varepsilon) = \bigcup W(\varepsilon, U)$, where the union is taken over all strategies U solving the problem of encounter with $M^{\varepsilon,3}$ for p_0 , is (γ, u) -stable relative to $M^{2\varepsilon,3}$ and $W(\varepsilon)_{\theta} \subset M^{2\varepsilon,3}_{\theta}$. We take the sequence $\varepsilon_j = 1/j, j = 1, 2, \ldots$; then the corresponding sequence of sets $\{W^{(j)} = [W(\varepsilon_j)], j = 1, 2, \ldots\}$ possesses properties 1)-4) and $p_0 \in \bigcap_j W^{(j)}$. Consequently, by Lemma 3.2, the problem of encounter with M is solvable. We note that, in general, the set $\bigcap_j W^{(j)}$ is not (γ, u) -stable (see the example).

REFERENCES

- 1. KRASOVSKII N.N. and SUBBOTIN A.I., Positional Differential Games. Moscow, NAUKA, 1974.
- KRASOVSKII N.N. and OSIPOV Iu.S., Linear differential-difference games. Dokl. Akad. Nauk. SSSR, Vol.197, No.4, 1971.
- OSIPOV Iu.S., Differential games for systems with aftereffect. Dokl. Akad. Nauk.SSSR, Vol.196, No.4, 1971.
- OSIPOV Iu.S., KRIAZHIMSKII A.V. and OKHEZIN S.P., Control problems in distributed-parameter systems. IN: Dynamics of Controlled Systems. Novosibirsk, NAUKA, 1979.
- KRIAZHIMSKII A.V., On the theory of positional differential encounter-evasion games. Dokl. Akad. Nauk.SSSR, Vol.239, No.4, 1978.
- OSIPOV Iu.S. and PIMENOV V.G., On the theory of differential games in systems with aftereffect. PMM Vol.42, No.6, 1978.

Translated by N.H.C.